
1

Cutting Latency Tail: Analyzing and Validating
Replication without Canceling

Zhan Qiu, Member, IEEE, Juan F. Pérez, Member, IEEE, Robert Birke, Member, IEEE, Lydia Chen, Senior
Member, IEEE, and Peter G. Harrison

F

Abstract—Response time variability in software applications can
severely degrade the quality of the user experience. To reduce this vari-
ability, request replication emerges as an effective solution by spawning
multiple copies of each request and using the result of the first one
to complete. Most previous studies have mainly focused on the mean
latency for systems implementing replica cancellation, i.e., all replicas
of a request are canceled once the first one finishes. Instead, we de-
velop models to obtain the response-time distribution for systems where
replica cancellation may be too expensive or infeasible to implement,
as in “fast” systems, such as web services, or in legacy systems.
Furthermore, we introduce a novel service model to explicitly consider
correlation in the processing times of the request replicas, and design an
efficient algorithm to parameterize the model from real data. Extensive
evaluations on a MATLAB benchmark and a three-tier web application
(MediaWiki) show remarkable accuracy, e.g., 7% (4%) average error
on the 99th percentile response time for the benchmark (respectively,
MediaWiki), the requests of which execute in the order of seconds
(respectively, milliseconds). Insights into optimal replication levels are
thereby gained from this precise quantitative analysis, under a wide
variety of system scenarios.

1 INTRODUCTION

The ubiquity of cloud computing has enabled many service
providers to exploit almost unlimited resources in a pay-as-
you-go model. While this model offers many advantages,
it also poses new challenges, some of them related to the
virtualized nature of the cloud offering. It has been observed
that virtualization can harm performance [1], [2] owing to
co-located virtual machines competing for CPU, memory
bandwidth or other resources. This performance degrada-
tion leads to an increased variability in processing times,
which impacts the application latency, particularly affecting
those users that face the longest response times [3].

To cope with this increasing variability, concurrent or
speculative request replication has been proposed [3]–[5].
With concurrent replication, a number of replicas of each
request are spawned simultaneously, and the result of the

• Z. Qiu and P. G. Harrison are with the Department of Computing, Impe-
rial College London, UK. E-mail: {zhan.qiu11,p.harrison}@imperial.ac.uk

• J. F. Pérez is with the Department of Applied Mathematics and Computer
Science, Universidad del Rosario, Colombia.
E-mail: juanferna.perez@urosario.edu.co

• R. Birke and L. Chen are with IBM Research Zurich, Switzerland.
E-mail:{bir,yic}@zurich.ibm.com

first replica to complete is used. This approach can therefore
benefit from resource performance variability, as two (or
more) copies of a request may be submitted to resources
experiencing different levels of load, thus increasing the
likelihood that a request receives service from a fast server.

However, although replication has the potential to re-
duce service times, it may negatively impact the queueing
times due to the additional load introduced by replicas,
potentially leading to longer overall delays. In this paper, we
aim to capture the trade-off between these two conflicting
effects of replication and characterize the scenarios under
which replication improves latency tails.

1.1 Contributions

Different from existing works, in this paper we are inter-
ested in evaluating replication for applications with very
short processing times, such as web services, which process
requests in the order of milliseconds. In these systems it
is not feasible to cancel all replicas of a request upon
completion of the first one, which is a mechanism commonly
used to limit the additional load introduced by replication.
In fact, most existing modeling studies [6]–[11] assume
that canceling is performed. This assumption simplifies the
analysis, thanks to the implicit synchronization introduced
by the canceling mechanism (all replicas of a request finish
service at the same time). Instead, we are interested here in
evaluating the impact of replication without canceling, which
lacks the synchronization mentioned above, and to this end
we derive a suite of stochastic models that accurately predict
request response times.

While most works in this area focus on the mean response
time as the sole performance metric, our models are able
to determine the response-time distribution. This enables us
to evaluate the impact of replication on different response-
time percentiles, which, as we will demonstrate, is far from
homogeneous. Furthermore, using this model we show that
the threshold load, i.e., the maximum load under which
replication is beneficial, may differ depending on whether
the evaluation is based on the mean response-time or on a
specific percentile.

In developing the model we emphasize its ability to
capture a wide range of real-world system scenarios. In
particular, we are able to model highly varying processing

2

times by utilizing phase-type (PH) distributions. We also
consider Markovian arrival processes (MAP), which gener-
alize traditional Poisson arrivals to model highly variable
and correlated inter-arrival times.

Moreover, through experimentation, we have observed
that the processing times of replicas of the same request can
be correlated. To capture this behavior, we introduce a novel
approach that uses correlated hyper-Erlang (CHE) distribu-
tions in an extension of our model. At the same time, we
apply an efficient fitting method based on the Expectation-
Maximization algorithm to parameterize the CHE service
model with respect to real data.

We demonstrate the models’ ability to predict the tail
response times through extensive experimentation on a
MATLAB benchmark [12] and on a standard three-tier web
application, namely, MediaWiki [13]. The resulting average
prediction errors for the 99th percentile of response times are
7% and 4%, respectively. In particular, the MediaWiki exper-
iments demonstrate the ability of the CHE service model to
accommodate correlated service times effectively, evident by
its accurate estimation of response time percentiles. Based
on these models, we derive insights into the design of
replication policies, e.g., optimal number of replicas and
threshold load, for real-world applications.

1.2 Related work

Request replication has been considered in [3], [6]–[11], [14]–
[18] as an efficient way to combat the variability in latency.
Joshi et. al. [11] analyze the impact of replication on the
mean response time and the cost of computing resources,
and show that this impact depends on the processing-time
distribution. Vulimiri et. al. [14] propose a queueing model
to derive the mean response time as a function of system
utilization and service-time distribution, and approximate
the threshold load under which replication improves mean
latency. Qiu and Pérez [6]–[8] evaluate the impact of repli-
cation on the response-time distribution in computing clus-
ters, considering any number of replicas and fairly general
processing and inter-arrival times.

Most existing works [3], [6]–[11], [17], [18] consider the
adoption of canceling to limit the additional load introduced
by the replicas. In fact, it is common to assume that re-
dundant replicas can be canceled at no cost. In contrast,
in this work we focus on cases where canceling is hard or
even infeasible to implement. This is particularly relevant
for fast systems where the canceling overhead would be
comparable in magnitude to the replica processing time,
such as web applications, in which requests usually take
only milliseconds to respond. In addition, canceling requests
on the fly may be hard to retrofit into existing systems that
were not designed to provide such a feature. Also, request
cancellation may introduce trust issues as servers need to
allow an external entity to terminate requests in execution.

From an analytical standpoint, the case we consider in
this paper is more challenging than its counterpart with
canceling, where replicas of a request always finish service
at the same time, adding a synchronization point that sim-
plifies the system dynamics. In fact, canceling plays a key
role in obtaining the scarce analytical solutions available
for request replication [10], [11]. For instance, canceling

enables [11] to reduce the problem to a single M/G/1
queue in the early-canceling case or to an approximate
M/G/C queue in the late-canceling one. Similarly, canceling
is key in obtaining the solution to the Markov chain model
in [10]. The absence of canceling allows servers to evolve
asynchronously, requiring a more complex analysis. This is
also reflected in the few existing results that consider the
cost of canceling, as these focus on fairly limited scenarios,
e.g., 2-server systems with a centralized queue, Poisson
arrivals, and exponential processing times [19]. An approxi-
mate approach to consider the operation without canceling,
as in [14], is to assume that each queue operates inde-
pendently, obtaining the request latency as the minimum
of the response times observed in several queues. Instead,
the analysis derived in this paper is exact in considering
replication without canceling.

In many applications, requests are fairly homogeneous
and their processing times depend largely on the server,
leading to a degree of independence between replicas’ ser-
vice times. However, in other applications, processing times
depend on the intrinsic details of the request, which impacts
all of its replicas. In such cases correlation among the
replicas of a request becomes significant; whilst commonly
ignored [6]–[8], [10], [14], it has only recently been taken into
account in [11], [20]. In contrast, this paper considers cases
of both independent and correlated processing times among
replicas of the same request. In addition, introducing MAP
arrivals enables us to capture bursty workloads.

Request replication has a number of other aspects that
have sparked attentions in recent works. For instance, Hop-
per [17], [18] considers the problem of replication-aware task
scheduling for analytics clusters. Here replica cancellation
is assumed in deriving the latency model that supports the
scheduling policy. On the other hand, request replication
can be performed for a subset of all requests, for instance
a fixed fraction of small requests, or it can be employed
only when there are idle servers. These design choices
have been explored experimentally for instance in [15], [21],
showing the benefits of replication. Aspects such as request
scheduling and state-dependent replication are beyond the
scope of this paper.

Finally, we should highlight that most existing works
focus on either modeling or system experimentation. The
only exception is [14], which studies the threshold load
by means of approximate models, and experiments with
different applications to confirm that this threshold load
for one additional replica is between 25% and 50%. To the
best of our knowledge, this is the first time a model for
request replication is able to provide response time mean
and percentiles, and its predictions are validated against
system measurements.

2 MOTIVATION AND SYSTEM SET-UP

Employing request replication to mitigate the latency tail
poses a number of challenges, which we now illustrate by
means of experiments conducted on a real-life web appli-
cation. We make use of MediaWiki [13], a standard three-
tier web application deployed on the Amazon Web Services
(AWS) public cloud. Details of the application can be found
in Section 7. We deployed the MediaWiki cluster on seven

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

C
D

F

Response time (sec)

Fig. 1: Response-time CDF on
AWS.

mean 95 99 99.9
0

0.5

1

1.5

2

Metric

M
et

ri
c

va
lu

e
(s

ec
) r=1 r=2 r=3

Fig. 2: Response times under
replication on AWS.

t1.micro instances: six running the MediaWiki stack and one
used as central queue to dispatch the requests. The cloud
deployment exposes the application to large variations in
its effective resource capacity, caused by virtual machines
(VM) co-located on the same physical machine, a notorious
drawback of cloud computing [1], [2]. This resource capacity
variability can cause large variations on the application
response times, as illustrated in Figure 1. Here we show
the cumulative distribution (CDF) of request response times.
The tail can be several times larger than the average re-
sponse time (350.5 msec). For example, the 95th and 99th

percentiles are 1022.1 and 1559.1 msec, respectively, while
the 99.9th percentile is 2163.1 msec, which is 6.17× larger
than the average.

To cope with this variability, we implement request repli-
cation to create r copies of each application request. How-
ever, due to the fast dynamics (on the order of milliseconds)
of web applications, it is difficult to cancel the outstanding
requests upon completion of the first one without incurring
a high processing overhead. We thus focus on replication
policies that do not cancel outstanding requests. Figure 2
depicts the response time mean and tail percentiles when
implementing between 1 and 3 replicas for an arrival rate of
1.33 requests per second. Clearly, replication is effective in
reducing the latency tail, with reductions close to 15% with
2 replicas. However, introducing a third replica hurts the
tail even if it improves the mean latency. This highlights the
importance of developing analytic models able to compute
the latency distribution under replication, as those proposed
in this paper, and not just the mean.

A common assumption when modeling replication is
that the processing times of the replicas of a request are
independent. Using measurements from the MediaWiki ap-
plication with an arrival rate of 1.33 requests per second and
2 replicas, Figure 3 depicts a scatter plot of the processing
times of the replicas of each request. Here we observe a large
mass along the 45◦ line, indicating a strong correlation be-
tween the replicas’ processing times. Also, two other masses
close to the axes indicate that in many cases one replica has
a long processing time whereas the other has a short one.
Thus, the replica processing times are highly varying but
not independent, key features that shall be considered in
the analytical model proposed in the next sections.

2.1 Reference model

Based on the motivating case study presented earlier, our
reference model, shown in Figure 4, consists of a central dis-
patcher and C distributed, homogeneous, and independent

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

S
e

co
n

d
 r

e
p

lic
a

 p
ro

ce
ss

in
g

 t
im

e

First replica processing time

Fig. 3: Processing times of
two replicas from the same
request on AWS.

A1�Ar�
…�B1�

…� �
�
�

FCFS�

r replicas�

Fig. 4: Reference model.

servers. Requests arrive at the dispatcher and join the next
server that becomes available with first-come first-served
(FCFS) scheduling. For each arriving request, r≥1 replicas
asking for the same content are initiated simultaneously and
added to the dispatcher. The request is considered complete
as soon as one of its r replicas completes service. The
remaining r−1 replicas continue their execution without
being terminated. The mean replica processing time is 1/µ,
and we consider two main types of replica processing times,
namely, phase-type and correlated hyper-Erlang, to capture
the key features of the processing times found in the case
study. Our objective is to derive the response-time distribu-
tion of requests analytically, for any given replication factor
r, number of servers C , and processing-time distribution.

Requests arrive at the system according to a Markovian
arrival process (MAP) with parameters (ma, D0, D1). A
MAP consists of an underlying Markov chain with ma

states, which evolves according to the rates in matrices
D0 and D1. The rates in D1 determine the arrival rate in
each state, whereas the rates in D0 mark transitions without
arrivals. We also introduce the notion of a job, which refers
to the set of replicas belonging to the same request. The job
response time is the difference between its arrival time and
the completion time of the first replica, which is the same as
the request response time.

The proposed model makes extensive use of phase-type
(PH) distributions [22]. A PH distribution is the distribution
of the time to absorption in a Markov chain with n+1
states, where the first n states are transient and the (n+1)th

state is absorbing. The generator matrix of such a chain

can be written as
[
B b
0 0

]
, where the matrix B holds the

transition rates among the n transient states, and the exit
vector b=−B1 holds the rates at which the chain jumps
into the absorbing state. Here 1 is a column vector of ones,
and 0 a row vector of zeros. We denote this distribution
as PH(τ , B), where τ is the 1×n vector holding the initial
probability distribution with which the chain starts in any
of the n transient states.

PH distributions serve three purposes in this paper: (i) in
Section 3, they are used to model request processing times
more general than the standard exponential distribution;
(ii) a subset of PH distributions is generalized in Section 6
to model correlated processing times; and (iii) the model
we introduce obtains a PH representation of the service-
, waiting- and response-time distributions, following the
steps discussed in the next section.

4

Algorithm 1 Computing the response-time distribution

Stage 1: Find waiting-time distribution (swait, Swait)
a. Compute T : find S and A(jump), and solve (2)
b. Compute π(0): find Snot-all-busy, S(all)-(not-all),

Rnot-all-busy and Rall-busy
c. Find (swait, Swait)

Stage 2: Find matrix Sser and vector sser of the service-
time distribution (sser, Sser) as in Section 3.2
Stage 3: Combine waiting and service times as in (10) to
obtain the response-time distribution (sres, Sres)

3 INDEPENDENT PROCESSING TIMES

One can view the job response time as made up of two
parts: (i) a waiting time from arrival until the first replica
starts processing, and (ii) a service time from the service
start of the first replica until the earliest replica completes
processing. Accordingly, we divide the analysis to first
obtain the job waiting-time distribution and then find the
job service-time distribution.

To obtain the waiting-time distribution we rely on the
techniques introduced in [23] for the standard multi-server
case, which we extend to consider requests replicated r≥1
times. Our analysis also extends the methods in [6]–[8],
which consider the case where replicas are canceled imme-
diately after the completion of the first one. The canceling
mechanism facilitates the analysis as all replicas of the same
request are terminated at the same time, freeing all resources
used by the request simultaneously. In fact, when the num-
ber of servers C is a multiple of the number of replicas
r, the analysis can be carried out by simply grouping all
servers in C/r groups as all the servers in each group are
synchronously seized and released by the r replicas of an
incoming request [6].

The case without canceling lacks the synchronization
mentioned above, requiring a more delicate treatment, par-
ticularly when deriving the service-time distribution. In
contrast to standard queueing systems, where the service-
time distribution is known beforehand, here the (stationary)
job service-time distribution depends on the overall system
state. When the system is lightly loaded, most jobs start
service with all their replicas, maximizing the benefits of
concurrent execution. Instead, when the system is heavily
loaded, most jobs will only be able to start with a single
replica, reducing the benefits of replication. Considering the
different conditions in which a job can start service is thus
necessary to derive the (stationary) job service-time distribu-
tion, and different from existing models that consider non-
replicated services or replicated requests with canceling.

To help readers navigate the approach described in the
next sections, we summarize the key steps of computing
the response-time distribution in Algorithm 1. The notation
used in the algorithm will be introduced in the sections
treating each step. In the following, we assume that the
replica service-time distribution is PH(sR, SR) with mR

phases, and refer to a period during which all the servers
are busy as an all-busy period and to a period where at least
one server is idle as a not-all-busy period.

TABLE 1: Transition rates for S andA(jump) with PH services

Matrix Condition From To Rate

S
w≥0 (n, w) (n+ej−ei, w) niSR(i, j)

w ≥ 1 (n, w) (n+ej−ei, w−1) niS
∗
R (i)sR(j)

A(jump) w=0 (n, 0) (n+ej−ei, r−1) niS
∗
R (i)sR(j)

3.1 The waiting-time distribution
The waiting time of a job is the time period between its
arrival and the time its first replica starts service. To obtain
the waiting-time distribution, we observe the queue only
during all-busy periods, as jobs that arrive during a not-all-
busy period see at least one idle server and start service
without waiting. In the same vein as in [23], we define a
bi-variate Markov process {X(t), J(t)|t≥0}, where the age
X(t) is the total time-in-system of the youngest job in service.
Thus, the waiting time of a job is equal to the value of the
ageX(t) at the time instant when the job starts service. More
specifically, the age X(t) takes values in [0,∞), increasing
linearly with rate 1 if no job starts service, because the time-
in-system of the youngest job in service increases at rate 1.
Instead, when a new job starts service, a downward jump in
X(t) occurs as the new job becomes the youngest in service.
When a new job starts service its age (time-in-system) is
equal to its waiting time. Note that we update X(t) when-
ever a new job starts service, but do not keep track of when
each job finishes, as jobs and their replicas may finish in any
order. On the other hand, the phase J(t)=(Dall-busy(t), A(t))
holds the phases of both the MAP arrival process A(t) and
the service process Dall-busy(t). During an all-busy period, as
a replica in service can be in any phase 1≤i≤mR, we define
the service state to be Dall-busy(t)=(n1(t), . . . , nmR

(t), w(t)),
where ni(t) is the number of replicas in service phase i and
w(t) is the number of replicas of the youngest job waiting in
the queue, at time t. Thus Dall-busy(t) takes values in the set
Nall-busy={(n1, . . . , ni, . . . , nmR

, w)|ni∈{0, . . . , C},
∑mR

i=1 ni
=C, 0≤w<r}, of size mall-busy. As the number of arrival
phases is ma, the total number of phases during the all-busy
period is m=mamall-busy.

Let the vector π(x) hold the steady-state density of
{X(t), J(t)}, which has been shown [23] to have a matrix-
exponential form such that

π(x) = π(0) exp(Tx). (1)

We thus have to obtain the vector π(0) and the matrix
T . The m × m matrix T satisfies the nonlinear integral
equation [23]

T = SMAP +

∫ ∞
0

exp(Tt)A
(jump)
MAP (t)dt, (2)

where SMAP=S⊗Ima , A
(jump)
MAP (t)=A(jump)⊗ exp(D0t)D1,

Ima is the identity matrix of size ma, and ⊗ denotes the
Kronecker product. S and A(jump) are mall-busy×mall-busy
matrices that hold the transition rates of the service process
associated with transitions without and with the start of a
new job, respectively. Matrix S+A(jump) is thus the generator
of the marginal service phase process during the all-busy
period. Table 1 summarizes the transition rates of these two
matrices, where n=(n1, . . . , nmR

) is the state of the service
process before the transition, and ei is a zero vector with a
one in the i-th entry. Here we consider that any of the ni

5

replicas in service phase i undergoes a transition without
service completion with rate SR(i, j) or with a service com-
pletion with rate S∗R(i), where S∗R=−SR1, allowing a new
replica to start service. In the latter case, if no replicas of the
youngest job are waiting in queue, a new job starts service
and this transition is recorded by the matrix A(jump).

Matrix T can be found by iteratively solving Eq. (2),
where each iteration involves the solution of a Sylvester
matrix equation [24]. Once T has been found, we obtain
π(0) to complete the matrix-exponential representation of
π(x). After finding π(0) and T , we can obtain the PH
representation of the waiting-time distribution (swait, Swait).
We provide the details in Appendix A1.

Notice that the vector π(x) exists if the process
{X(t), J(t)} is positive recurrent, which holds under the
following condition, proved in Appendix B.
Lemma 1. The process {X(t), J(t)} is positive recurrent if

and only if rλ < Cµ, where 1/µ is the mean replica
processing time and λ is the request arrival rate.

Given the no-canceling policy, this condition simply shows
that the input traffic increases r times with replication and
that the queue becomes unstable if this total traffic surpasses
the processing capacity Cµ.

3.2 The service-time distribution
We now move to the second step of the procedure, where
we find a PH representation (sser, Sser) for the job service-
time distribution. To determine this distribution, we follow
the execution of a tagged job from the time its first replica
starts service until one of its replicas completes service. In
addition, when not all replicas of the tagged job are in
service, we need to keep track of the non-tagged replicas
in service, as their service completion marks the start of
the tagged replicas in the queue. To define the service
process let ni(t) be the number of tagged replicas in service
phase i, and oi(t) the number of non-tagged replicas in
service phase i, at time t. The service process Dser(t) is thus
(n1(t), . . . , nmR

(t)) when
∑mR

i=1 ni(t)=r (all tagged replicas
in service) and as {(o1(t), . . ., omR

(t)), (n1(t), . . ., nmR
(t))},

when
∑mR

i=1 ni(t) < r (at least one tagged replica in
the queue). This process thus takes values in the set
Nser = N all

ser ∪ N
part
ser , where N all

ser = {(n1, . . . , nmR
)|0 ≤

ni ≤ r,
∑mR

i=1 ni = r} covers the states where all tagged
replicas are in service, and the remaining states are in
N

part
ser = {(o1, . . . , omR

), (n1, . . . , nmR
)|0 ≤ oi < C, 0 ≤

ni < r, 1 ≤
∑mR

i=1 ni < r,
∑mR

i=1(oi + ni) = C}. We let
mser = |Nser|, mall

ser = |N all
ser|, and order Nser by placing the

phases in the set N all
ser first, and then those in Npart

ser .
The job service-time distribution PH(sser, Sser) is thus

defined by a 1×mser vector sser with the distribution of the
initial job service phase, and an mser × mser sub-generator
matrix Sser holding the transition rates among all service
phases. The nonzero entries of Sser are defined in Table 2,
where the vectors o = (o1, . . . , omR

) andn = (n1, . . . , nmR
)

hold the state of all non-tagged and tagged replicas in
service before the transition, respectively. The condition
under which each transition is valid is included in the last
column of the table, where we make use of the 1-norm

1. All appendices are provided as electronic supplementary material

TABLE 2: Transition rates for Sser

From To Rate Condition
n Service completion

∑mR
i=1 niS

∗
R (i) ||n||=r

n n+ ej − ei niSR(i, j) ||n||=r

(o,n) (o+ ej − ei,n) oiSR(i, j) ||n||≤r−1
(o,n) (o,n+ ej − ei) niSR(i, j) ||n||≤r−1
(o,n) (o− ei,n+ ej) oiS

∗
R (i)sR(j) ||n||≤r−2

(o,n) (n+ ej) oiS
∗
R (i)sR(j) ||n||=r−1

(o,n) Service completion
∑mR

i=1 niS
∗
R (i) ||n||≤r−1

||n|| =
∑mR

i=1 ni, which is the total number of tagged replicas
in service. The first two rows consider tagged transitions,
with and without a service completion, when all tagged
replicas are in service. Note that this transition is only valid
when all r replicas are in service, i.e., when ||n|| = r. In
the remaining rows, at least one tagged replica is still in the
queue. Rows three and four cover the cases of transitions
without service completion for non-tagged and tagged repli-
cas, respectively. Instead, in rows five and six a non-tagged
replica completes service, letting one tagged replica start
service. The difference is that in row five at least one tagged
replica is left in the queue after the transition, whereas in
row six the last tagged replica starts service. The last row
considers the service completion of a tagged replica when
there still are tagged replicas in the queue.

Having obtained Sser, it remains to determine the vector
sser, which holds the stationary probability that a job starts
service in each phase. In other words, sser is the distribution
of the service phase of the youngest job in service immedi-
ately after its service starts. To obtain sser we first define the
mall-busy ×mser matrix M , which holds the rates at which a
downward jump in the age process occurs in service phase
i ∈ Nall-busy and causes the new job to start service in phase
j ∈ Nser. Thus, the nonzero entries in matrix M correspond
to service-completion rates from service states where no
replicas of the youngest job in service are waiting in the
queue (w = 0), allowing a new job to start service with a
single replica. Therefore, the transition rate in M from state
(n, 0) to state (n − ei, ej) is given by niS

∗
R(i)sR(j). Also,

we define the probability γ that a job has to wait, given in
Appendix A. Considering the different conditions in which
a job starts service we obtain the following results.
Lemma 2 (Busy start). The initial service phase for jobs that

must wait before starting service is given by

sbusy = γc1αbusyL(M ⊗D1), (3)

where

L =

∫ ∞
0

exp(Tu) (Ims ⊗ exp(D0u)) du, (4)

αbusy = −π(0)T−1 is the stationary distribution of the
phase, and c1 is a normalizing constant.

Proof: If a job finds all servers busy upon its arrival,
and therefore must wait, its initial phase must consider
the state of all non-tagged replicas already in service. The
initial phase of this job is therefore related to the stationary
distribution of the service phase after a downward jump in
the age process X(t), as these are the time points at which
new jobs start service. We know that the joint distribution
of the age and the phase is π(x). Furthermore, because of

6

the matrix-exponential form, the probability that the age
reaches [x + u, x + u + du), given that the age is x and
the phase is i, is independent of x. Thus, the probability
that level x is visited after a downward jump and that this
occurs by visiting service phase j ∈ Nser is given by the jth

entry of

c1

∫ ∞
0

∫ ∞
0
π(x) exp(Tu) (M ⊗ exp(D0u)D1) dudx. (5)

Here c1 is a normalizing constant, π(x) exp(Tu) is the prob-
ability density of reaching an age in [x+u, x+u+ du), and
exp(D0u)D1 is the probability density of observing a down-
ward jump of size [u, u+du). As stated above, the matrix M
holds the service-completion rates that trigger a downward
jump and the probability with which the new job starts
service in each phase. With αbusy = −π(0)T−1, we can
write Eq. (5) as c1αbusyL(M ⊗D1), with L as in Eq. (4). To
ensure that (5) is stochastic, we set c−11 = αbusyL(D1⊗M)1.
As γ is the probability that a job has to wait, such a job starts
service according to sbusy in Eq. (3).

Note that the matrix L has a similar form as P in
Appendix A and can thus be found by solving an associated
Sylvester matrix equation.

Lemma 3 (Full start). The initial service phase for jobs that
start service without waiting and without initiating an
all-busy period is given by

sall
not-busy = (1− γ)pr[sr 0

mser−mall
ser

1], (6)

where pr is given by Eq. (7) and 0b
a is an a×b zero matrix.

Proof: A job arrives during a not-all-busy period and
starts service without waiting with probability 1−γ. Among
the arrivals in a not-all-busy period, all but one start service
with all their replicas, whereas the last arrival initiates an
all-busy period. Let η1 be the number of arrivals in a not-
all-busy period, thus E[η1] − 1 is the expected number of
jobs among them that find more than r idle servers upon
arrival. Thus the probability that a job starts service during
a not-all-busy period without initiating an all-busy period is

pr = (E[η1]− 1)/E[η1]. (7)

E[η1] can be computed as in [23, Section 7.2]. When a job
finds more than r idle servers, it starts service in state nr =
(nr1, . . . , n

r
mR

) ∈ N all
ser, where nri is the number of replicas

that start service in phase i. We define the vector sr of size
mall

ser, with entries sr(nr) = p(nr), where p(nr) is the multi-
nomial probability given in Appendix A, for every phase
vector nr ∈ N all

ser. The vector sr thus reflects the random
and independent selection of the initial service phase by
each of the r replicas in the job. Thus, in this case, a job
starts service with probability vector sall

not-busy in (6) as the
job does not wait with probability 1 − γ, finds more than
r idle servers with probability pr, and its r replicas start
service according to sr . Note that vector sr is assigned to
the first phases as these correspond to the set N all

ser ⊂ Nser,
where the tagged job has all its replicas in service, while the
remaining entries of sall

not-busy are zero.
Before considering the final case, we define an

mnot-all-busy ×mser matrix Rser, the (i, j)th element of which
holds the probability that a job that initiates an all-busy period

TABLE 3: Transition prob. for Rnot-all-busy, Rall-busy, and Rser

Matrix From To Prob Condition
Rnot-all-busy n n+nr p(nr) ||n||+r<C

Rall-busy n (n+nw, r−w) p(nw) ||n||+r≥C,w=C−||n||
Rser n (n,nw) p(nw) ||n||+r≥C,w=C−||n||

starts service in phase j ∈ Nser given that the service phase
was i ∈ Nnot-all-busy just before its arrival. The entries of
matrix Rser are shown in Table 3, illustrating the start of
a new job with w replicas in phase nw with multinomial
probability p(nw) given in the Appendix.
Lemma 4 (Partial start). The initial service phase for jobs

that start service without waiting and initiate an all-
busy period is given by

s
part
not-busy = (1−γ)(1−pr)c2π(0)PQ−1not-all-busy(Rser⊗D1),

(8)
where pr is given in Eq. (7), and P , and Qnot-all-busy are
given in Appendix A. respectively, and c2 is a normaliz-
ing constant.

Proof: From the proof of Lemma 3, with probability
(1−γ)(1−pr) a job finds 1≤w≤r idle servers, starts service
with its first w replicas, and initiates an all-busy period. In
this case the initial service phase of the job is equal to the
distribution of the service phase at the beginning of an all-
busy period, which is given by

c2π(0)

∫ ∞
0

exp(Tu)S∗(u)Q−1not-all-busy(Rser ⊗D1)du,

where c2 is a normalizing constant that ensures that the
vector is stochastic. This expression considers that the age
during an all-busy period is u with probability density
π(0) exp(Tu), and a transition according to S∗(u) triggers
the beginning of a not-all-busy period. The matrix S∗(u) =
S(all)-(not-all) ⊗ exp(D0u) captures that the next arrival occurs
after u time units, such that a service completion ends the
all-busy period. Next, the system evolves according to the
sub-generator Qnot-all-busy (given in Appendix A), until an
arrival finds at most r idle servers, initiating an all-busy
period and selecting its initial service phase according to
Rser ⊗ D1. Note that we can make use of the integral term
P , defined in Appendix A, c2π(0)PQ−1not-all-busy(Rser ⊗ D1),
and c−12 = π(0)PQ−1not-all-busy(Rser ⊗D1)1 makes this vector
stochastic. As a result, the initial service phase of a job
that initiates the all-busy period is distributed according to
s

part
not-busy in Eq. (8).

From the results above, the initial distribution of the job
service phase is given by the following theorem.
Theorem 1. The stationary distribution of the job initial

initial service phase sser is given by

sser = sbusy + sall
not-busy + s

part
not-busy. (9)

3.3 The response-time distribution
We can now put together the PH representations of waiting
and service times to obtain the PH representation (sres, Sres)
of the response-time distribution as

sres = [swait, sall
not-busy + s

part
not-busy],

Sres =

[
Swait (−Swait1)sbusy/γ

0
mamall-busy
mser Sser

]
.

(10)

7

10 30 50 70 90 99 99.90

1

2

3

4

Response time percentiles

R
es

po
ns

e
ti

m
e r=2: B M

r=3: B M
r=4: B M

(a) (Poisson, Exp, 4)

10 30 50 70 90 99 99.90

1

2

3

4

5

6

Response time percentiles

R
es

po
ns

e
ti

m
e ER2: B M

HE2: B M

(b) (Poisson, ER2/HE2, 4)

10 30 50 70 90 99 99.90

1

2

3

4

Response time percentiles

R
es

po
ns

e
ti

m
e B M

(c) (MAP, Exp, 4)

10 30 50 70 90 99 99.90

0.5

1

1.5

2

2.5

3

Response time percentiles

R
es

po
ns

e
ti

m
e B M

(d) (Poisson, Exp, 20)

Fig. 5: Experimental validation with the MATLAB benchmark on response-time percentiles. Each experiment is labeled
by a tuple of (arrival process, processing-time distribution, number of servers). B and M denote results obtained from the
benchmark and the model, respectively.

Note that to define vector sres we make use of the sall
not-busy

and spart
not-busy vectors in Eq. (9), which cover the cases where

a job starts service without waiting. Other jobs must first
undergo a waiting time, starting with vector swait, after
which they start service according to vector sbusy/γ, where γ
is used to re-normalize the vector to be stochastic. With this
PH representation, we can directly compute the response-
time CDF, percentiles, and moments.
Remark 1. From the previous description it is clear that the

sets Nall-busy, Nnot-all-busy, and Nser grow large rapidly
with the number of phases mR and the number of
servers C . We have extended the numerical methods
in [25] to efficiently compute the matrix T , the vec-
tor π(0), as well as moments and percentiles of the
response-time distribution. Appendix Ehighlights the
key ideas behind this solution method.

4 VALIDATION

To test the accuracy of the model introduced in the previous
section, we have implemented replication for a simple MAT-
LAB benchmark application, which is executed on a multi-
processor host where each processor plays the role of a
server in the model. This section describes the experimental
set-up and results.

4.1 Experimental Set-up
We have implemented replication for a MATLAB bench-
mark application in which requests arrive to a central dis-
patcher that keeps a request queue and allocates the first
request in the queue to the next available worker. Workers
are mapped to independent processors such that the system
operation follows the reference model introduced in Sec-
tion 2.1. In particular, we employ the MATLAB blackjack
benchmark [12], where each request emulates a game of
blackjack that consists of a pre-defined number of blackjack
hands. As the execution time per hand is fairly deterministic,
we modify the distribution of the request execution time by
altering the distribution of the number of hands.

In our set-up requests are generated according to a
Poisson or a MAP process. We use MAPs to consider ar-
rivals with high variability and auto-correlation, and we
set the squared coefficient of variation (SCV)2 of the inter-
arrival times to 10 and the decay rate of the auto-correlation

2. SCV = V ar[Y]/E[Y]2 for a random variable Y , where V ar[Y]
and E[Y] are the variance and expected value of Y , respectively.

function to 0.5. To set the request execution time we fix
the mean number of hands to 2000 per request, and gen-
erate the number of hands according to three PH distribu-
tions, namely, exponential (Exp), 2-phase Erlang (ER2), and
hyper-exponential (HE2). The random variates generated
are rounded to obtain an integer number of hands. The SCV
for ER2, Exp, and HE2 is 0.5, 1, and 10, respectively, showing
an increasing degree of variability. We use the methods
of [26], [27] to obtain PH and MAP representations with
these moments. In each experiment we run the benchmark
ten times, each time executing a total of 5000 requests,
and compute the response time percentiles and their 95%
confidence intervals.

4.2 Performance Prediction

We ran the benchmark application on an Intel Core i7-
3770 machine with 4 cores running at 3.4 GHz, and 16 GB
of memory, launching one worker per core. Running the
application without replication we obtain a mean processing
time of 0.52 sec, which we use to parameterize the model.
Setting the arrival rate to 1 request per second we obtain
a load of 0.13. We compare the measured and the predicted
response times in Figure 5, where each experiment is labeled
by a tuple of (arrival process, processing-time distribution,
number of servers), and we denote benchmark results by
B and model results by M in the legend. Under Poisson
arrivals and exponentially-distributed processing times, as
in Figure 5(a), our model shows remarkably good prediction
results for replication factors r=2, 3 and 4. For instance,
the average error across all the percentiles depicted for
the r=2 case is only 2.72%. Focusing on the r=2 case,
Figure 5(b) considers more general request processing-time
distributions, ER2 and HE2, where we observe that our
model is also accurate for systems with non-exponential
processing times. Similarly, replacing Poisson arrivals by
MAP, Figure 5(c) shows that our model predicts results well
even under highly varying and auto-correlated arrivals.

We have also deployed the application on a shared clus-
ter made of 4 Intel Xeon E5-4650 machines, with a total of
32 cores running at 2.70 GHz, and 512 GB of memory. Here
we deploy 20 workers and set the arrival rate to 4 requests
per second. With a measured mean request execution time
of 0.71 sec, we achieve a utilization of 0.14. Figure 5(d)
displays the results for this case, under Poisson arrivals
and exponentially distributed processing times. We observe
that our model predicts the entire response-time distribution

8

10 20 30 40 50 60 70 80 90 99 99.9-10
0

20

40

60

80

100

Response time percentiles

Im
pr

ov
em

en
t(

%
) r=2 r=3 r=4

(a) ER2 services

10 20 30 40 50 60 70 80 90 99 99.9-10
0

20

40

60

80

100

Response time percentiles

Im
pr

ov
em

en
t(

%
) r=2 r=3 r=4

(b) HE2 services

Fig. 6: Percentile improvement.

well, showing a good prediction capability under a high
level of parallelism.

5 INSIGHTS REGARDING REPLICATION

The excellent accuracy of the proposed model enables us to
explore a large experimental space efficiently and derive in-
sights regarding replication. Particularly, we aim to answer
two key questions: (i) when can replication improve the per-
formance and to what extent; and, (ii) what is the maximum
baseline load for replication to improve the response times
compared with the baseline.

5.1 The Impact of Replication
For the results in this section we consider a system with
C=20 servers, Poisson arrivals and two processing-time
distributions, namely, ER2 and HE2, defined in Section 4.
The mean processing time is set to 1 sec, and the arrival rate
is set to achieve a baseline load of 0.2. Figure 6 depicts the
relative improvement for each percentile p in the range {10,
20, . . . , 90, 99, 99.9}, comparing the response times obtained
with replication levels r=2, 3 and 4 against those without
replication. For r=2 and 3, the case under ER2 services, as
shown in Figure 6(a), has a relatively smooth behavior, with
the improvement increasing slightly with the percentile. In
contrast, for HE2 services we observe large peaks in the tail.
For instance, for r=3 the improvement on the tail is as high
as 95%, while the average improvement is around 60%. We
have observed a similar behavior in other set-ups, indicating
that replication is effective in reducing latency, particularly
the tail of the latency distribution. While the improvement
increases from r=2 to 3 for all the percentiles, it decreases
when r increases to 4, especially for the tail under ER2

services, and between the 50th and 90th percentiles under
HE2 services. In fact, having 4 replicas is harmful for the
90th percentile under HE2 services. Thus, care must be
taken in evaluating the specific percentiles of interest as the
effect of replication is nonuniform over the response-time
distribution, to the point that it may benefit some percentiles
while hurting others. Also, the service time distribution
must be adequately characterized as it has a large impact
on the benefits of replication.

5.2 The threshold load
We now turn to find the threshold load, that is, the maximum
baseline load under which replication is beneficial. Here we
illustrate our main observations by means of some example
set-ups, but we have observed similar behaviors in many

MAP-mean MAP-99 Poi-99
0

0.2

0.4

Case

Th
re

sh
ol

d
lo

ad r=2 r=3 r=4

(a) Different arrival processes
and performance metrics

2 3 4
0

0.2

0.4

Number of replicas

Th
re

sh
ol

d
lo

ad c=5 c=20

(b) Different number of
servers

Fig. 7: Threshold load.

other configurations. Note that, for a replication factor r,
the baseline load is upper bounded by 1/r, as introducing
r replicas in a system with a baseline load larger than
1/r would make it unstable. To determine the threshold
load, we rely on the golden section search method [28]. We
summarize our key findings in the following.

1. The threshold load is nonuniform along the res-
ponse-time distribution. Figure 7(a), where we assume
20 servers and HE2 services with a mean processing time
of 1 sec, shows how the threshold load changes when
evaluating different response-time metrics. Comparing the
first two cases, which assume MAP arrivals, we observe
that the threshold load is always larger if we evaluate
the 99th percentile rather than the mean. As a result, a
decision to replicate based solely on potential gains for the
response time tail may actually have a negative effect on
the mean. For instance, in this set-up we find that under
a load of 0.4 the 99th percentile decreases by 20% with
the introduction of one replica, while the mean increases
by over 90%. This highlights the importance of explicitly
considering the response-time distribution, and the targeted
percentiles, when evaluating a replication strategy.

2. The threshold load decreases with the variability
and auto-correlation of the arrival process. Replacing MAP
arrivals by Poisson, as shown in the third case in Figure 7(a),
we observe a large increase in the threshold load. For in-
stance, for r=2, the threshold load increases from 0.38 under
MAP arrivals to 0.46 under Poisson arrivals. This is caused
by the high burstiness of the MAP process, as replication
during bursty periods increases the probability of causing a
high utilization, and thus longer delays. Thus, results based
on the Poisson assumption, when the actual arrival process
displays high variability and/or auto-correlation, can lead
to the wrong decision of introducing replication when it is
not beneficial.

3. The threshold load increases with the number of
servers. Figure 7(b) shows the effect of the number of
servers on the threshold load, using the 95th percentile as
the decision-making metric, under Poisson arrivals and Exp
services with mean service rate µ = 1. Clearly, the threshold
of the 5-server case is smaller than that of the 20-server case.
In particular, when introducing 2 replicas, the threshold load
for the 5-server case is 0.35, whereas it is 0.46 for the 20-
server set-up. Thus, more servers provide more flexibility to
benefit from replication.

In conclusion, the threshold load decreases with the
number of replicas as well as with the variability and auto-
correlation of the arrival process, but increases with the
number of servers.

9

TABLE 4: Mean errors in percentiles fitting power-law
traces: comparing exponential fit and hyper-Erlang fit.

Expo PH (hyper-Erlang)
Num. Phases 1 2 5 8 10 15 20

Avg. Error (%) 51.0 44.8 30.9 20.5 18.5 16.1 15.2

10 20 30 40 50 60 70 80 90 99 99.9-20

0

20

40

60

80

100

Response time percentiles

Im
pr

ov
em

en
t(

%
) r=2 r=3

(a) Exponential fit

10 20 30 40 50 60 70 80 90 99 99.9-20

0

20

40

60

80

100

Response time percentiles

Im
pr

ov
em

en
t(

%
) r=2 r=3

(b) PH (hyper-Erlang) fit

Fig. 8: Percentile improvement for power-law traces: com-
paring exponential fit and hyper-Erlag fit with different
replication factors.

5.3 Heavy-tailed execution times

Task execution times in production clusters have been ob-
served to follow power-law [21] or heavy-tailed [17] distri-
butions, which are characterized by having a right tail that
decreases slower than that of an exponential distribution.
We assume that execution times follow a PH distribu-
tion, which do not display a heavy tail. However, hyper-
exponential distributions, a special case of PH distributions,
have been used in [29], [30] to approximate the heavy-tailed
behavior observed in internet traffic traces. The key to this
approximation is to use each phase in the distribution to
approximate the behavior of the data trace along a different
scale of values.

To evaluate the impact of replication under a power-
tail behavior we rely on a similar approximation, using a
hyper-Erlang distribution to approximate the Bellcore trace
BC-pAug89, which has been shown to display a power-law
behavior [31]. We opt for the hyper-Erlang distribution as
it is more flexible than the hyper-exponential used in [29],
[30]. To obtain the hyper-Erlang distribution from the BC-
pAug89 trace we employ the method proposed in [32], as
implemented in [33]. Table 4 displays the mean relative dif-
ference between the percentiles of the fitted distribution and
the trace percentiles. Specifically, we compare the percentiles
{1, 2, . . . , 99}. With the exponential fit the mean error is
over 50%, which reflects a large disagreement between the
observed distribution and the fitted one. Instead, with a PH
fit the mean error decreases to 20% with 8 phases and to
15% with 20 phases. Note that all these distributions match
the observed mean perfectly, but matching the percentiles
is much harder. Even so, the PH distributions are able to
approximate the trace percentiles well.

We now look into how the choice of distributions used to
model the BC-pAug89 trace affects the impact of replication
on the request latency. Figure 8 depicts the improvement
in the response time percentiles when introducing 2 and
3 replicas, with 5 servers and a baseline load of 0.2. Fig-
ures 8(a) and (b) correspond to an exponential fit and a
PH fit with 8 phases, respectively. With one additional
replica (r=2) the exponential fit predicts a fairly stable

improvement around 40% across all percentiles. Instead, the
PH distribution shows that one additional replica actually
increases the low (up to the 20-th) percentiles, but decreases
by over 60% the 70-th to 90-th percentiles. This difference
is caused by the ability of the PH distribution to better
capture the tail behavior of the service time distribution,
enabling the model to better portray the complex impact
that replication has under such heavy-tailed distributions.

6 CORRELATED PROCESSING TIMES

As illustrated in Section 2, replicas of a request display
similarities in their processing times. As the model we
have introduced assumes independent processing times,
these similarities have not been considered. In fact, the
independence of processing times is a standard assumption
in queueing models, and there are few results for correlated
processing times. When such a correlation is considered, as
in [34], it is modeled as a general correlation between the
processing times of successive requests, whereas here we are
interested in correlating the processing times of the replicas
of the same job. We thus introduce a model that explicitly
captures the correlation among replica processing times and,
importantly, fits within the analysis framework defined in
Section 3.

To model correlated processing times within a Marko-
vian model, we introduce the concept of correlated hyper-
Erlang (CHE) distributions. Hyper-Erlang distributions [32]
model convex combinations of Erlang distributions and are
a sub-class of PH distributions. Here we extend this set of
distributions to incorporate a dependence between replicas
of the same job. Let a CHE distribution be characterized by
a set of B branches B, the probability αi of choosing branch
i ∈ B, the number of exponential phases hi in branch i ∈ B,
and the rate λi in each phase of branch i ∈ B. These are
the parameters that characterize a standard hyper-Erlang
distribution. The key difference here is that, while each job is
allowed to select a branch independently, all replicas of a job
must select the same branch. To model this behavior, we let
the first replica of a job select branch i ∈ B with probability
αi, and force all other replicas from the same job to select
the same branch as the first replica. With these definitions,
we extend the model of Section 3 to handle this modified
service process. We provide the details in Appendix C.
Remark 2. Under the CHE service model the effective ser-

vice time of each replica follows an Erlang distribution.
This assumption can be generalized so that these times
follow hyper-Erlang distributions, which are dense in
the set of all continuous distributions with non-negative
support. However, we have found that this generaliza-
tion has little impact on the estimation errors with the
experimental data described in the following sections.
This suggests that the simpler model captures well the
experimental data for the set-up considered. For this
reason, and in the interest of clarity, we describe here
the simpler case with Erlang processing times and leave
the generalization for Appendix F.

6.1 Fitting Correlated Processing Times
The CHE service-time model introduced above allows the r
replicas of a job to be correlated in the sense that all of them

10

select the same Erlang branch of the CHE distribution. The
benefits of the CHE service model can only be exploited
as long as we are able to fit the model parameters from
a data trace. While fitting methods exists for general PH
distributions [35] and some of its sub-classes [30], [32], no
such method exist for the CHE service model since this
is the first time this model is proposed. We now propose
a maximum-likelihood method for this purpose, based on
the Expectation Maximization (EM) algorithm proposed by
Dempster et al. [36]. Because our analysis method obtains
the response-time distribution, its ability to provide accurate
results depends on capturing the processing-time distribu-
tion well. As a maximum-likelihood approach considers
the overall processing-time distribution, it appears better
suited than the other widely adopted class of fitting method,
moment matching [26], which captures only the first few
moments. Also, the popularity of the EM method for PH
distributions is due to its ability to handle mixtures of dis-
tributions, which we can also exploit for CHE distributions.

We assume a trace D={x1, . . . ,xD}, where each of
the D observations is a tuple xd=(x1d, . . . , x

r
d) holding the

processing times of the r replicas of a job. From this trace,
we want to determine the entire set of parameters of the
CHE model (B, h1, . . . , hB , α1, . . . , αB , λ1, . . . , λB). How-
ever, and similar to [32], we split this problem in two. First,
we assume the number of branches B, and the number
of phases hi in each branch is known. Thus, we focus on
determining the parameters Θ = (α1, . . . , αB , λ1, . . . , λB),
that is, the probability αi of choosing each branch and the
corresponding Erlang rate λi, for i ∈ B. Later in this section,
we consider how to determine B and hi.

The basic idea behind the EM algorithm is to start with
an initial guess of the parameters Θ̂. We then iterate to
obtain new values of Θ̂ that maximize the log-likelihood
function by following the derivation detailed in Appendix
D. Specifically, we compute δ(b|xd, Θ̂), the probability that
branch b is selected given data xd, and estimates Θ̂, which is
the expectation step in the EM method. In the optimization
step, we obtain the branch selection probabilities and the
Erlang rates as

αb=
1

D

D∑
d=1

δ(b|xd, Θ̂), λb=
rhb

∑D
d=1 δ(b|xd, Θ̂)∑D

d=1 δ(b|xd, Θ̂)
∑r

j=1 x
j
d

. (11)

As evidenced in this last expression, derived in Appendix
D, the key characteristic of this method, and what makes it
different from existing ones, is that it considers each sample
xd as an r-tuple, and these r processing-times samples are
tied by the selection of the same Erlang branch, in agreement
with the CHE model.

We are now ready to state the EM algorithm for the
CHE service model, summarized in Algorithm 2. The al-
gorithm requires the total number of phases mR, the data
D, and a stopping criterion ε. As mR is equal to the
sum of the number of stages in all branches,

∑
i∈B hi,

the algorithm determines all possible combinations for the
number of branches and number of stages in each branch
(B, h1, . . . , hB), as in [32] for the independent hyper-Erlang
case. For each possible combination, it then executes the EM
steps derived in Appendix D, starting from an initial guess
for the parameters and iterating until the difference between

Algorithm 2 EM algorithm for the CHE service model

Require: Data: D, Number of phases: mR, ε
1: S = {(B, h1, . . . , hB)|

∑B
b=1 hi = mR}

2: bestLH =∞
3: for (B, h1, . . . , hB) ∈ S do
4: Initial guess Θ̂ = (α̂1, . . . , α̂B , λ̂1, . . . , λ̂B)
5: diff = 1
6: while diff > ε do
7: Compute δ(b|xn, Θ̂), b = 1, . . . , B, d = 1, . . . , D

as in (26), (24)
8: Compute αb, λb, b = 1, . . . , B as in (11)
9: diff = max |Θ̂− (α1, . . . , αB , λ1, . . . , λB)|

10: Θ̂ = (α1, . . . , αB , λ1, . . . , λB)
11: end while
12: Compute logL(Θ̂|D) as in (25)
13: if logL(Θ̂|D) > bestLH then
14: Θ∗ = Θ̂
15: bestLH = logL(Θ̂|D)
16: end if
17: end for
18: return Θ∗

3.33 5 6.67 10 20
0

10

20

Number of replicas

Er
ro

r
(%

)
r=2 r=3 r=4

(a) Mean response time

3.33 5 6.67 10 20
0

5

10

15

20

Number of replicas

Er
ro

r
(%

)

r=2 r=3 r=4

(b) 99th percentile

Fig. 9: Experimental validation with MediaWiki.

two successive sets of estimates in Eq. (11) is less than the
pre-defined limit ε. Once the estimates have been found,
it computes the log-likelihood and compares it against the
best one found so far, keeping the set of estimates Θ∗ with
the highest log-likelihood, which is returned at the end of
execution. Note that considering all possible combinations
(B, h1, . . . , hB) for a given number of phases mR is feasible
as long as this number is moderate. Given that the CHE
service model is to be used for analysis as described in
Section 6, we are actually interested in small to moderate
values for mR, and the full enumeration is thus feasible. In
Section 7, we illustrate how this method is able to capture
the correlation structure in the processing times of request
replicas from a real system.

7 EVALUATION ON MEDIAWIKI

In this section, we evaluate the capability of the proposed
model to predict the response-time distribution of a real-life
application, MediaWiki, and show how our proposed analy-
sis can guide the selection of optimal replication factors. We
first present the experimental set-up, followed by extensive
experiments.

11

3.33 5 6.67 10 20
1

2

3

4

Arrival rate (request/sec)

O
pt

im
al

fa
ct

or

wiki model

(a) Mean response time

3.33 5 6.67 10 20
1

2

3

4

Arrival rate (request/sec)

O
pt

im
al

fa
ct

or

wiki model

(b) 99th percentile

Fig. 10: Optimal replication factor: measurement vs. model.

7.1 Set-up

Our private cloud testbed is composed of eight identical
physical servers, seven used to run the experiments and one
used as experiment orchestrator and repository. Each server
is equipped with 32 cores, 128 GB DDR4 RAM, six 1-TB solid
state disks in RAID5, and two 10-Gigabit Ethernet adapters.
We use MediaWiki, the open source platform used to run
the Wikipedia website, as a representative application in the
cloud [13]. MediaWiki is a latency-sensitive three-tier web
application composed of Apache (v2.4.7) plus PHP (v5.5.9)
as application server frontend, Memcached (v1.4.14) as in-
memory key-value store and MySQL (v5.5.40) as database
backend. In addition, we use an in-house dispatcher written
in Go, which replicates and distributes HTTP requests. We
deploy a MediaWiki cluster consisting of seven VMs config-
ured with two virtual CPUs and 4 GB of RAM. Six VMs run
a complete stack of all three tiers, and one VM is used as the
dispatcher. We deploy the cluster in two set-ups: (i) dense,
six VMs on three physical servers, each server holding two
VMs; and (ii) sparse, each VM hosted on a separate physical
server. The average processing time per request for each
MediaWiki VM is 1/µ = 72.98 msec. Requests are generated
with httperf [37], an open-loop workload generator. Due to
the space limit, we only present the results for the dense
set-up in the following.

Upon receiving a request, the dispatcher immediately
initiates r replicas of the same request and dispatches the
replicas to any available VM, with FCFS scheduling. The
dispatcher ensures that the maximum number of replicas at
each VM is one and that the outstanding requests all wait at
the dispatcher. This set-up is used in distributed systems,
such as Spark, due to its ability to inherently adjust the
request dispatching rate to the variable speed of each VM.

To emulate performance variability in the public cloud,
we artificially spawn neighboring workloads following
Poisson arrivals and exponential run times. The spe-
cific neighboring workload used is fluidanimate, a CPU-
intensive benchmark from PARSEC 3.0 [38]. Each Medi-
aWiki is co-located with such a neighbor, and we keep
the average active time of neighboring workloads around
50% of the MediaWiki experiment time using a mean inter-
arrival time of 60 sec and a mean runtime of 30 sec.

7.2 Results

We validate our proposed analysis against seven load sce-
narios, considering Poisson arrivals with mean arrival rates
λ of 3.33, 5, 6.67, 10, 20, 30 and 40 requests per second,
thus achieving a baseline load of 0.04, 0.06, 0.08, 0.12, 0.24,

3.33 5 6.67 10 20
0

20

40

60

80

Arrival rate (request/sec)

Im
pr

ov
em

en
t(

%
) mean

99th

Fig. 11: Improvement us-
ing optimal factor r∗.

10 30 50 70 90 99 99.90

20

40

60

Response time percentiles

Er
ro

r
(%

)

moment PH CHE

Fig. 12: Prediction errors using
different fitting methods.

0.36 and 0.48 without replication, respectively. For each
combination of arrival rate and replication factor, we collect
mean and 99th percentile across 50000 requests resulting in
over 100 hours of experiment time. For each arrival rate and
replication factor, we parameterize the model from the trace
using a CHE distribution with 10 phases and 2 branches.
Figure 9 summarizes the relative percentage error between
the analytical results and the measurements, focusing on
the response time mean and 99th percentile. Here we omit
the results for λ=30 and 40 as they do not benefit from
replication. The errors for these two cases are 11.5% and
9.9% for the mean, and 1.2% and 0.1% for the 99th percentile,
when r=2 for λ=30 and 40, respectively. Our model slightly
underestimates the mean response time, although the errors
are all below 20%. In contrast, we observe that our model
performs very well on the 99th percentile, with most errors
under 5%. We note that such fitting results are remarkable
given the complexity of the application considered.

A key requirement for a system that implements repli-
cation is to determine the optimal replication factor r∗.
Figure 10(a) and (b) show the empirical and analytical
replication factors that minimize the mean and the 99th

percentile, respectively. We find that in certain cases the
testbed offers very similar response times under two repli-
cation factors. In these cases we allow multiple optimal
replication factors if the response times differ by less than
5%. For instance, for an arrival rate of 5, the mean response
time for r=2 and 3 is 62.93 and 63.76 msec, respectively, a
difference of just 1.32%, thus we consider both replication
factors as optimal. From Figure 10(a) and (b) we observe
that our model identifies the optimal replication factor in
all cases considered. As expected, the optimal replication
factor decreases with increasing arrival rate, owing to the
extra loads introduced by replication. A key observation
here is that the optimal replication factors for the 99th

percentile are lower than those for the mean. This confirms
our observations in Section 5 and highlights the importance
of considering the targeted percentiles when choosing the
replication factor.

When the optimal number of replicas is adopted, Fig-
ure 11 depicts the improvement in the mean and the 99th

percentile against the set-up without replication. Clearly,
replication improves the response times significantly, and
has a stronger impact on the tail than on the mean. For
instance, when the arrival rate is 5, the improvement is
21.57% on the mean and 70.05% on the 99th percentile.
Moreover, for both the mean and the 99th percentile, the
improvement is much stronger for low arrival rates as it is
more likely for several replicas to execute in parallel, thus
the system benefits from selecting the replica that completes

12

2 3 4
0

10

20

Number of replicas

Er
ro

r
(%

)
λ: 3.33 6.67 10 20

(a) Mean response time

2 3 4
0

5

10

15

20

Number of replicas

Er
ro

r
(%

)

λ: 3.33 6.67 10 20

(b) 99th percentile

Fig. 13: Prediction errors using λ = 5.

first. Instead, under high loads, the extra load introduced by
replication leads to longer queueing times, diminishing the
benefit.

We now evaluate the introduction of correlation among
the replicas’ processing times and compare the predictions
obtained from three different fitting methods: a moment-
matching method [26], an EM method for independent PH
distributions [32], and the EM method for CHE distributions
introduced in Section 6.1. We consider the case with arrival
rate 6.67 and replication factor r=2. Figure 12 shows the pre-
diction errors on the response time percentiles, {10, . . . , 90,
95, 99, 99.9}, compared with the testbed measures. Clearly,
the CHE distribution achieves the lowest errors, especially
at the tail, where the error on the 99.9th percentile is as low
as 0.55%. The independent PH distribution performs well
up to the 95th percentile, but fails to capture the tail, which is
a key performance metric. The moment-matching method,
in contrast, behaves erratically, with a large error on the tail.
Further, we compare the ability of the CHE and PH models
to capture the 99.9th percentile under different replication
factors. With r=2, the 99.9th percentile predicted with the
CHE model is 0.3452, very close to the measurement of
0.3471, while the PH model predicts 0.1291. This difference
however diminishes as the replication factor increases, since
more replicas benefit more from the resource diversity,
weakening the pair-wise correlation. Thus, increasing r to
3, the measured 99.9th percentile is 0.1707, very close to the
0.1667 predicted by the CHE model, while the PH model
estimates 0.1415. In terms of optimal replication factor, the
CHE model predicts 3 replicas – in agreement with the mea-
surement, whereas the PH model chooses 2 replicas. Again,
this observation highlights the advantage of considering the
correlation explicitly by fitting the processing times using
the CHE model.

Finally, we show that our model can be used to pre-
dict the response times under different loads and repli-
cation factors. Note that the characteristics of the replica
processing-time distribution, in particular, its variability and
correlation, differ under different replication factors. Thus,
to predict the response times for a given replication factor
r, we first fit the replica processing time from a historical
trace with the same r, under any load. We then use the
fitted distribution to predict the response times for different
arrival rates and the same r. As an example, we fit the
replica processing times observed for the case with λ=5
and r=2, and use them to predict the response times for
cases with arrival rates of 3.33, 6.67, 10, and 20, all with
r=2. Figure 13 shows the errors obtained for the mean and

99th percentile, considering replication factors r=2, 3 and 4.
We observe a good prediction performance for all arrival
rates, with an average error of 12.61% for the mean and
4.89% for the 99th percentile, similar to those observed in
the validation setup. The model accuracy is thus resilient to
being parameterized under one arrival rate and used under
any other arrival rate.

All in all, our analysis can guide the choice of optimal
replicas for any response time percentile and a wide range
of load scenarios, including different arrival patterns and
highly varying and dependent processing times.

8 CONCLUDING REMARKS

The results in the previous sections show that the models
proposed in this paper are able to capture the effect of
replication without canceling on the response-time distri-
bution, accurately estimating the significant impact of the
processing-time distribution and the arrival process, partic-
ularly pertaining to their variability and auto-correlation.
The remarkable accuracy on predicting response-time dis-
tributions at a wide range of load scenarios enables us to
derive insights on adopting replication. In particular, we
observe that the impact of replication is not homogeneous
across the response-time percentiles and that the threshold
load, i.e., the maximum load under which replication of-
fers latency gains, can differ if the evaluation is based on
the response-time mean or on a specific percentile. Also,
the introduction of the CHE service model enables us to
incorporate the observed correlation among the processing
times of replicas of the same request. Further, the model
results, extensively validated on a three-tier web application
(MediaWiki) and a MATLAB benchmark, is effective in
identifying the optimal replication factors for different la-
tency metrics, i.e., mean vs. tail percentiles, highlighting the
importance of analyzing response-time distribution when
designing replication policies.

A limitation of the method lies in that it operates on
matrices that can grow very fast in size with the number
of servers, especially if the processing-time distribution has
many phases. There is therefore a trade-off between the ac-
curacy gained by including more phases in the processing-
time distribution and the scalability of the models. For
instance, by exploiting the efficient methods devised in
Appendix E, with the number of phases equal to two we
are able to solve models with up to 50 servers in less than
2 seconds on a commodity desktop. Future work will look
into alternative approaches to tackle large-scale systems that
adopt replication.

REFERENCES

[1] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,
and M. M. Swift, “More for your money: exploiting performance
heterogeneity in public clouds,” in ACM SOCC, 2012.

[2] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measure-
ments in the cloud: observing, analyzing, and reducing variance,”
VLDB Endow., vol. 3, pp. 460–471, 2010.

[3] J. Dean and L. A. Barroso, “The tail at scale,” CACM, vol. 56, pp.
74–80, 2013.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce
clusters using mantri,” in USENIX OSDI, 2010.

13

[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” in USENIX OSDI, 2008.

[6] Z. Qiu and J. F. Pérez, “Evaluating the effectiveness of replication
for tail-tolerance,” in IEEE CCGRID, 2015.

[7] ——, “Enhancing reliability and response times via replication in
computing clusters,” in IEEE INFOCOM, 2015.

[8] ——, “Assessing the impact of concurrent replication with cancel-
ing in parallel jobs,” in IEEE MASCOTS, 2014.

[9] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant
requests reduce latency?” in Allerton, 2013.

[10] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyy-
tia, “Reducing latency via redundant requests: Exact analysis,” in
ACM SIGMETRICS, 2015.

[11] G. Joshi, E. Soljanin, and G. Wornell, “Efficient replication of
queued tasks for latency reduction in cloud systems,” in Allerton,
2015.

[12] “Simple benchmarking of parfor using blackjack,”
http://uk.mathworks.com/help/distcomp/examples/
simple-benchmarking-of-parfor-using-blackjack.html, 2015.

[13] “Mediawiki,” https://www.mediawiki.org/wiki/MediaWiki,
2015.

[14] A. Vulimiri, P. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in CoNEXT, 2013.

[15] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Why
let resources idle? aggressive cloning of jobs with Dolly,” Memory,
vol. 40, p. 80, 2012.

[16] B. Snyder, “Server virtualization has stalled, despite the hype,”
http://www.infoworld.com/print/146901, 2010.

[17] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized speculation-aware cluster scheduling at scale,” in
ACM SIGCOMM, 2015.

[18] ——, “Speculation-aware cluster scheduling,” SIGMETRICS Per-
form. Eval. Rev., vol. 43, no. 2, 2015.

[19] K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling re-
dundant requests with cancellation overheads,” in Allerton, 2015.

[20] K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf, “A better
model for job redundancy: Decoupling server slowdown and job
size,” in MASCOTS, 2016.

[21] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effec-
tive straggler mitigation: Attack of the clones,” in USENIX NSDI,
2013.

[22] G. Latouche and V. Ramaswami, Introduction to matrix analytic
methods in stochastic modeling. SIAM, 1999.

[23] S. Asmussen and J. R. Møller, “Calculation of the steady state
waiting time distribution in GI/PH/c and MAP/PH/c queues,”
Queueing Syst., vol. 37, pp. 9–29, 2001.

[24] Q. He, “Analysis of a continuous time SM[K]/PH[K]/1/FCFS
queue: Age process, sojourn times, and queue lengths,” JSSC,
vol. 25, pp. 133–155, 2012.

[25] Z. Qiu and J. F. Pérez, “Evaluating replication for parallel jobs: An
efficient approach,” accepted in IEEE TPDS.

[26] W. Whitt, “Approximating a point process by a renewal process,
I: Two basic methods,” Oper. Res., vol. 30, pp. 125–147, 1982.

[27] J. E. Diamond and A. S. Alfa, “On approximating higher order
MAPs with MAPs of order two,” Queueing Syst., vol. 34, pp. 269–
288, 2000.

[28] J. Kiefer, “Sequential minimax search for a maximum,” Proc. Amer.
Math. Soc., vol. 4, pp. 502–506, 1953.

[29] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to
long-tail distributions to analyze network performance models,”
Perform. Eval., vol. 31, pp. 245–279, 1998.

[30] R. E. A. Khayari, R. Sadre, and B. Haverkort, “Fitting world-wide
web request traces with the EM-algorithm,” Perform. Eval., vol. 52,
pp. 175–191, 2003.

[31] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On
the self-similar nature of ethernet traffic (extended version),” IEEE
ToN, vol. 2, pp. 1–15, 1994.

[32] A. Thummler, P. Buchholz, and M. Telek, “A novel approach for
phase-type fitting with the EM algorithm,” IEEE TDSC, vol. 3, pp.
245–258, 2006.

[33] J. F. Pérez, D. F. Silva, J. C. Góez, A. Sarmiento, A. Sarmiento-
Romero, R. Akhavan-Tabatabaei, and G. Riaño, “Algorithm 972:
jMarkov: An integrated framework for Markov chain modeling,”
ACM Trans. Math. Softw., vol. 43, no. 3, pp. 29:1–29:22, 2017.

[34] V. Gupta, M. Burroughs, and M. Harchol-Balter, “Analysis of
scheduling policies under correlated job sizes,” Perform. Eval.,
vol. 67, no. 11, pp. 996–1013, 2010.

[35] S. Asmussen, O. Nerman, and M. Olsson, “Fitting phase-type
distributions via the EM algorithm,” Scand. J. Statist., vol. 23, pp.
419–441, 1996.

[36] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. Roy. Statist. Soc., vol. 39,
pp. 1–38, 1977.

[37] “httperf,” https://github.com/httperf/httperf, 2015.
[38] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-

tation, Princeton University, January 2011.

Zhan Qiu is a PhD student in computer science at Imperial College Lon-
don. She received a MSc in Computer Science from Imperial College
London in Oct 2012. Her research interests include data-driven per-
formance engineering and evaluation of computer and communication
systems, parallel processing, performance optimization and resource
provisioning. She is a member of the IEEE, and the IEEE Communi-
cations Society.

Juan F. Pérez is Assistant Professor at Universidad del Rosario, Colom-
bia, Department of Applied Mathematics and Computer Science. He
obtained a PhD in Computer Science from the University of Antwerp,
Belgium, in 2010. He was a Research Associate in performance anal-
ysis at Imperial College London, UK, Department of Computing, and a
Research Fellow in stochastic modeling at the University of Melbourne,
Australia, School of Mathematics and Statistics. His interests center
around the performance analysis of computer systems, especially on
cloud and cluster computing and optical networking.

Robert Birke received his Ph.D. in 2009 from the Politecnico di Torino,
Italy. He is with IBM Research Zurich in Cloud & Computing Infrastruc-
ture department. His research interests center on virtual resource man-
agement for large scale data centers, aiming to optimize the application
latency, system throughput, and resource efficiency, particularly energy.
He is a IEEE member.

Lydia Y. Chen is a research staff member at the IBM Zurich Research
Lab, Zurich, Switzerland. She received a Ph.D. from the Pennsylvania
State University. Her research interests include performance evaluation
for datacenters and big data systems. She has served on several tech-
nical program committees in various performance and network confer-
ences, including DSN, INFOCOM, ICDCS, ICAC, and Middleware. She
is a IEEE senior member.

Peter G. Harrison is Professor of Mathematical Modelling in the De-
partment of Computing at Imperial College London. He obtained his
Ph.D.in Computing Science at Imperial College in 1979. He has re-
searched into stochastic performance modelling and algebraic program
transformation for some thirty five years, visiting IBM Research Centers
during two summers. He has written two books, had over 200 research
papers published and held a series of research grants, both national
and international. Currently, his main research interests are in stochastic
modelling, where he has developed the RCAT methodology for finding
separable solutions, Hidden Markov Models, response time analysis
and modulated fluid models, together with applications such as storage
systems, resource virtualization and energy-saving.

